202/Phs.

22-23 / 22452

## P.G. Semester-II Examination, 2023 PHYSICS

Course ID: 22452 Course Code: PHS-202C

Course Title : Quantum Mechanics-II and Classical Electrodynamics-II

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

## UNIT-I

1. Answer any three of the following questions:

 $2 \times 3 = 6$ 

- a) Discuss the limitations of the perturbation theory and JWKB approximation.
- b) Why do we need time reversal symmetry operator to be anti-linear?
- c) Evaluate  $[J^2, J_{1z}]$ , where  $J = J_1 + J_2$ .
- d) Determine the eigen values and eigen vectors of  $S_{x}$ .
- e) Establish that for symmetric potential, the Hamiltonian keeps the parity conserved.

[Turn over]

2. Answer any **two** of the following questions:

 $4 \times 2 = 8$ 

- a) Prove that the  $L_x$  is the generator of infinitesimal rotation about the *x*-axis.
- b) Distinguish between ortho and para-Helium. Write down the wave function for ortho- and para-Helium states. 2+2
- c) Use the variational method to estimate the ground state energy of the hydrogen atom.
- d) Show that under the application of JWKB approximation the energy eigen value of a linear

harmonic oscillator is  $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$ .

3. Answer any **one** of the following questions:

 $6 \times 1 = 6$ 

- a) Derive the transition probability of a harmonic potential and hence calculate the limitation of Fermi-golden rule.
- b) Under what conditions the Born approximation is used? By using Born approximation, calculate the differential scattering cross section by the following square well potential

$$V(r) = -V_0 \text{ for } r < a$$

$$= 0 \text{ for } r > a.$$
1+5

202/Phs.

[2]

## **UNIT-II**

4. Answer any three of the following questions:

 $2\times3=6$ 

- a) In the context of EM wave what do you mean by dispersion? What is the physical significance of a complex wave vector?
- b) Graphically show the variations of Refractive index and Absorption Coefficient as functions of frequency of the incident EM wave in the case of anomalous dispersion.
- c) What is plasma oscillation?
- d) With schematic diagram, physically explain the pinch effect.
- e) Define cavity resonator. What is Q of the cavity?
- 5. Answer any **two** of the following questions:

 $4 \times 2 = 8$ 

- a) Derive an expression for Debye length and explain its physical significance. 4
- b) i) Write down Cauchy's Dispersion Formula.
  Under what conditions it is valid.

[3]

ii) Why are Kramers-Kronig relations important? What is the basic phenomena of a primary assumption (mention at least any one) that helps you derive the relations? (No derivations are required.)

(1+1)+(1+1)

- c) What do you mean by TE, TM and TEM waves in case of EM fluids? How do you differentiate between them?
- d) Considering a rectangular waveguide, show that the dominant TE mode has the lowest cut-off frequency and it is lower by a factor of

$$\left(1+\frac{a^2}{b^2}\right)^{-\frac{1}{2}}$$
 than the dominant TM mode. a, b are

the dimensions of the waveguide with a > b.

1

6. Answer any **one** of the following questions:

 $6 \times 1 = 6$ 

- a) Assuming electrons in a non-conducting medium to be a set of oscillators, derive the Lorentz Dispersion relation when an EM wave falls on the medium.
- b) Discuss basics differences between Magnetohydrodynamic wave and Plasma oscillations. Write Magnetohydrodynamic equations and explain the terms properly. Explain how is the concept of magnetic hydrostatic pressure coming from force equation?

1+2+3

\_\_\_\_\_